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Abstract

Two- and three-dimensional flows, heat and mass transfer in a horizontal enclosure with aspect ratio of two filled

with saturated porous medium were analyzed numerically. The enclosure is heated differentially and stably stratified

species concentration is imposed vertically. The Prandtl number is fixed to 10 (aqueous solutions). The Lewis number is

varied in the range of 1.0–1000 to cover a wide range of species diffusion material in water. The work is concentrated on

stable stratified flow. The results of two- and three-dimensional models were compared. Interesting results are obtained

for a wide range of solutal to thermal buoyancy ratios. The difference in the rate of heat and mass transfer between

prediction of three- and two-dimensional simulations is not that significant, even though the flow exhibits a three-

dimensional structure. This is due to the fact that the spanwise flow is very weak when compared with main

flow. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Natural convective heat and mass transfer in a

saturated porous medium in enclosures has numerous

industrial and geophysical applications, such as petro-

chemical process, food industry, grain storages, elect-

rochemical process, fuel cells, pollutant dispersions in

soil and underground water. A comprehensive review of

the literature on double diffusion, natural convection in

saturated porous media may be found in [1–5]. As far as

the relation between thermal and concentration buoy-

ancy forces is concerned, the problem of double diffu-

sion can be classified into the following categories. Heat

and mass gradients are imposed horizontally along the

enclosure, either aiding or opposing each other. The

other category is that the heat and mass gradients are

imposed vertically, again either aiding or opposing each

other (modified Rayleigh–Benard convection; stratified

medium). Both problems were extensively considered in

the literature, and mostly it is assumed that the flow is

two-dimensional [2–4,6–14]. Recently, Sezai and Mo-

hamad [5], presented results for three-dimensional flow

in a cubic cavity filled with porous medium and sub-

jected to opposing thermal and concentration gradients.

Their results revealed that for a certain range the con-

trolling parameters of the flow become three-dimen-

sional and multi-solution is possible within this range.

Therefore, it is difficult to justify two-dimensional as-

sumptions for that range of controlling parameters.

Furthermore, the relation between thermal and con-

centration gradients can be categorized as a cross gra-

dient relation, where the thermal and concentrations

gradients are imposed vertically and horizontally, re-

spectively, or vice versa. This kind of problem was re-

cently considered by Mohamad and Bennacer [15] and

Bennacer et al. [16]. They assumed that the flow is

two-dimensional and the analysis was done for an

enclosure with aspect ratio of two, Pr ¼ 0:71, Le ¼ 10,
GrT ¼ 106–108, Da ¼ 10�4–10�6 and for buoyancy ratio,
0:256N 6 2:0. Flow bifurcation is predicted for N value

International Journal of Heat and Mass Transfer 45 (2002) 3725–3740
www.elsevier.com/locate/ijhmt

*Corresponding author. Tel.: +1-403-220-2781; fax: +1-403-

282-8406.

E-mail address: amohamad@enme.ucalgary.ca (A.A. Mo-

hamad).

0017-9310/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310 (02 )00093-5



in the range of about 0.8–1.0. The bifurcation occurs

when the concentration buoyancy force starts to over-

come the thermally induced flow. One main circulation

is predicated for thermally dominated flow and as the

concentration gradients are increased to a limit, the

thermally driven flow is suppressed and the flow breaks

into two thermally driven circulations. These circula-

tions exist near the horizontal boundaries. With further

increase of concentration gradient (N ), the flow is totally
suppressed by strong stable concentration gradient

and the flow may be channeled along the boundaries.

Also, Bennacer et al. [16] explored the stability of the

same problem, where oscillatory flow is predicted for

a limited range of buoyancy ratios. The oscillatory flow

is attributed to the interaction between concentration

plumes and thermal cells.

In general, the geometrical, initial and boundary

conditions symmetry is not a sufficient condition for the

flow symmetry as explored by Sezia and Mohamad [5]

for double diffusion problem in an enclosure subjected

to opposing thermal and concentration buoyancy forces.

Perfect symmetry is not possible in real systems due to

defects in geometry, initial and boundary conditions. In

numerical analysis, errors due to false diffusion, trun-

cation and rounding off errors may become sources of

asymmetry. Fluid dynamics is full of such problems,

such as Rayleigh–Benard and Taylor–Couette flows.

Therefore, there is a good reason to explore the possi-

bility of three dimensions, which is more realistic, of the

double diffusion in an enclosure subjected to cross gra-

dients.

Isothermal stable or unstable stratification takes

place in an enclosure subjected to positive or negative

concentration gradient, respectively. Stable stratification

produces linear diffusive gradient in the vertical direc-

tion and any perturbation in the initial or boundary

conditions may be suppressed due to stratification.

Heating the vertical boundary induces flow, which

transfers high concentration parcels in the flow direc-

tion. These parcels may be carried to a region of low

temperature and fluid starts descending before reaching

the end of the enclosure. Hence, it is expected that the

flow structure become complex and may be three-

dimensional depending on the controlling parameters.

For isothermal unstable stratification (high concen-

tration on top of low concentration), perturbation in the

Nomenclature

A aspect ratio, A ¼ L=H
C dimensional solute concentration

D mass diffusivity (m2 s�1)

Da Darcy number, K=H 2

g gravitational acceleration (m s�2)

GrS solutal Grashof number, gbSDCH
3=m2

GrT thermal Grashof number, gbTDTH
3=m2

H ; L height and length of the enclosure

K permeability of the porous medium

Le Lewis number, a=D
N buoyancy ratio, bSDC=bTDT
Nu average Nusselt number

P dimensionless pressure

Pr effective Prandtl number, m=a
Ra modified thermal Rayleigh number,

GrTPrDa
RaT thermal Rayleigh number, GrTPr
Sc effective Schmidt number, m=D
Sh average Sherwood number

T dimensional temperature (K)

uðvÞ horizontal and vertical components of the

velocity

UðV Þ horizontal (vertical) dimensionless compo-

nents of velocity, uH=mðvH=mÞ
x; y coordinate system

Greek symbols

a thermal diffusivity (m2 s�1)

bS coefficient of density change due to con-

centration

bT coefficient of volumetric thermal expansion

(K�1)

� porosity

g; ðnÞ dimensionless coordinate system, y=H ,
ðx=HÞ

/ dimensionless concentration, (C � C0Þ=DC
h dimensionless temperature, (T � TcÞ=DT
DC concentration difference between horizontal

boundaries, C1 � C0
DT Temperature difference between vertical

boundaries, Th � Tc
l dynamic viscosity of the fluid (kg m�1 s�1)

leff viscosity in the Brinkman model

(kg m�1 s�1)

m kinematics viscosity (m2 s�1)

q fluid density (kg m�3)

Subscripts

Eff effective

Eq equivalent

F fluid

0 reference state

S solutal

T thermal
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initial or boundary conditions may be amplified and

flow initiates in the cavity. Rolls or plums form above

threshold concentration Rayleigh number (concentra-

tion Rayleigh–B�eenard problem), i.e., the flow structure
depends on the concentration Rayleigh number, geo-

metry of the container and fluid properties. The flow

structure becomes quite complex and a two-dimensional

solution is difficult to justify. On the other hand, if a

temperature gradient is imposed horizontally (differen-

tial heating), it may rearrange the structure of the flow,

which depends on the thermal Rayleigh number and

two-dimensional solution can be justified for a certain

range of controlling parameters. It is worth mentioning

that imposing horizontal temperature gradient may have

similar effects of tilting the enclosure or shearing the lid

of the cavity.

These problems (stable and unstable) have funda-

mental importance as well as applications in geophysics,

oceanography and the industry. For instance, in fuel

storage installations, heavy or light fuel leaks into the

surrounding soil and any fire or heating sources nearby

the system may initiate fire. Understanding such a

problem is very important in fire control measures.

Fig. 2. Streamline (top), temperature (middle) and concentration (bottom) contours for two-dimensional and for different buoyancy

ratios: (a) N ¼ 0; (b) N ¼ �0:8; (c) N ¼ �1:0; (d) N ¼ �1:5, RaT ¼ 105, Pr ¼ 10, Le ¼ 10, Da ¼ 10�3.

Fig. 1. Schematic diagram and the coordinate system for con-

vection with horizontal temperature and vertical solutal gradi-

ent.
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Landfill material decomposition due to bacterial activity

produces flammable gases, which nearby heat sources

may drive these gases to the heat source naturally. Re-

newable energy storage in stably stratified (salt solution)

pool subjected to solar heating is efficient if the con-

vection is prevented. Understanding the criteria for the

onset of convection is very important in such a problem

in order to improve thermal energy storage in solar

ponds. Therefore, the present work can be justified ac-

ademically and has some applications. In this work only

stably stratified fluid is considered and there is work in

progress on unstably stratified flow.

The paper focuses on the analysis of the flow, heat

and mass transfer in a horizontal cavity of aspect ratio

of two in longitudinal direction, which may resemble

flow in a large enclosure. Prandtl number is fixed to 10

(aqueous solutions). The Lewis number is varied in the

range of 1.0–1000 to cover wide range of species dif-

fusion material in water. The work is concentrated

on stable stratified flow. Two- and three-dimensional

models were developed and the results of these models

were compared. Interesting results were obtained for a

wide range of solutal to thermal buoyancy ratios. The

difference in the rate of heat and mass transfer be-

tween prediction of three- and two-dimensional simu-

lations is not that significant, even though the flow

exhibits three-dimensional structure. This is due to the

fact that the spanwise flow is very weak compared with

main flow.

2. Governing equations

A three-dimensional, steady state, incompressible

laminar flow model is considered in the present study.

All properties are assumed to be constant except that the

effect of density variations on buoyancy is retained, by

using the Boussinesq approximation. Also, Soret and

Dufour effects are assumed to be negligible. The di-

Fig. 2 (continued)
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mensionless governing equations based on the above

assumptions are as follows:

Continuity

r � V ¼ 0: ð1Þ

Momentum

0 ¼ �rP þ RaT
Pr

ðH þ NUÞk� 1

Da
V þ Cr2V : ð2Þ

Energy

V � rH ¼ K
Pr

r2H: ð3Þ

Species conservation equation

V � rU ¼ K
PrLe

r2U: ð4Þ

The above equations are non-dimensionalized using LZ ,
(Th � Tc), (Ch � Cl), and m=LZ as a length, temperature,
species concentration and velocity, respectively. Hence,

the non-dimensionalized variable can be defined as:

X ¼ x=LZ , Y ¼ y=LZ , Z ¼ z=LZ , P ¼ pL2=qm2, U ¼ uLZ=m,
V ¼ vLZ=m, W ¼ wLZ=m, H ¼ ðT � TCÞ=ðTH � TC) and
U ¼ ðC � ClÞ=ðCh � Cl). The other non-dimensional

parameters in the above equations are Prandtl number

Pr ¼ m=a, thermal Rayleigh number RaT ¼ gbTDTL
3
Z=ðmaÞ

the ratio of buoyancy forces, N ¼ RaS=RaT, the solutal
Rayleigh number, RaS ¼ gbCðCh � ClÞL3Z=ðmaÞ, the Darcy
number, Da ¼ K=L2Z , the Lewis number, Le ¼ a=D. The
parameters, g, k, K, b, m, and a refer to gravitational
acceleration, unit vector in the vertical direction, per-

meability of the medium, coefficient of volumetric ex-

pansion, kinematics viscosity, and thermal diffusivity,

respectively. Since the particle Reynolds number is less

than unity, the Forchheimer term has been dropped

Fig. 3. Streamline contours for three-dimensional for transverse plax (X–Z) X ¼ 0:5 (top), 1.0 (middle) and 1.5 (bottom) and for
different buoyancy ratios: (a) N ¼ 0; (b) N ¼ �0:8; (c) N ¼ �1:0; (d) N ¼ �1:5; RaT ¼ 105, Pr ¼ 10, Le ¼ 10, Da ¼ 10�3.
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from the momentum equation (3) compared with Darcy

and Brinkman terms. The ratio between effective vis-

cosity and fluid viscosity, C, and the ratio of effective
thermal conductivity to fluid thermal conductivity, K,
are set to unity.

Boundary conditions for the velocity and tempera-

ture in non-dimensional form are as follows:

for X ¼ 0; H ¼ 1; oU
oX

¼ 0; U ¼ V ¼ W ¼ 0 ð5aÞ

for X ¼ LX=LZ ; H ¼ 0; oU
oX

¼ 0; U ¼ V ¼ W ¼ 0

ð5bÞ

for Z ¼ 0; H ¼ 1; oH
oX

¼ 0; U ¼ V ¼ W ¼ 0 ð5cÞ

for Z ¼ 1; H ¼ 0; oH
oX

¼ 0; U ¼ V ¼ W ¼ 0 ð5dÞ

for Y ¼ 0 and Y ¼ LY =LZ , non-slip condition applied for
velocity components and heat and mass fluxes are set to

zero.

3. Method of solution

Eqs. (1)–(4) and (5a)–(5d) are discretized using stag-

gered, non-uniform control volumes. In order to mini-

mize the numerical diffusion errors, a third order

accurate QUICK scheme with flux limiter [17] is used in

approximating the advection terms. The SIMPLE algo-

rithm [18] is used to couple momentum and continuity

equations. The momentum equations are solved by ap-

plying one iteration of the strongly implicit procedure

(SIP) [19]. The discretization of the pressure correction

equation results in a set of equations with a symmetric

coefficient matrix which is solved by the conjugate gra-

Fig. 3 (continued)

3730 A.A. Mohamad, R. Bennacer / International Journal of Heat and Mass Transfer 45 (2002) 3725–3740



dient (CG) method until the sum of absolute residuals

has fallen by a factor of 10. On the other hand, the co-

efficient matrix of the set of equations resulting from the

discretization of the energy equation is non-symmetric

and solved iteratively by the BI-CGSTAB method [20].

SSOR preconditioning is used for accelerating the con-

vergence rates of both the CG and the BI-CGSTAB

methods. In most of the calculations presented here, a

relaxation factor of 0.7 was applied toU, V,W, P, and T.

The use of iterative solution procedure efficiently

removes only those Fourier components of the error

whose wavelengths are smaller than or comparable to

the grid spacing. The rate of convergence is high at the

beginning of the calculation but it becomes worse after a

few outer iterations. To reduce the high computer times

inherent in the solution of three-dimensional natural

convection problems, a full approximation storage

(FAS) full multi-grid (FMG) method [5] applied to

three-dimensional staggered grids is used to solve the

problem which removes a wider spectrum of wave-

lengths efficiently. The equations are solved by a three

level fixed V-cycle procedure starting at the coarsest

grid and progressing to the finer grid level. For pro-

longation operations tri-linear interpolation is used for

all variables. For restriction, the area weighted aver-

age procedure is used for all quantities defined on the

Fig. 4. Streamline contours for three-dimensional for N ¼ 0:0, different transverse plan (Y–Z): (a) X ¼ 0:5 (top), (b) X ¼ 1:0 (middle)
and (c) X ¼ 1:5 (bottom); RaT ¼ 105, Pr ¼ 10, Le ¼ 10, Da ¼ 10�3.
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control-volume surface such as velocities. The volume

weighted average procedure is adopted for all quantities

defined at the control-volume center such as pressure

and temperature.

In this work 82� 62� 62 non-uniform grids are used
on the finest level in the X , Y and Z directions. The non-
uniform grids have denser clustering near the surface

boundaries.

To ensure convergence of the numerical algorithm

the following criterion is applied to all dependent vari-

ables over the solution domain:

X /m
ijk � /m�1

ijk

/mijk

�����

�����6 10
�3;

where / represents a dependent variable U, V,W, P and
T, the indexes i, j, k indicate a grid point; and the index

m the current iteration at the finest grid lever. Also, the

code is validated extensively for double diffusion prob-

lems and results were published elsewhere [5,21].

4. Results and discussion

Simulations were performed for two- and three-

dimensional flows in an enclosure filled with saturated

porous medium. The results of flow and heat and mass

transfer characteristics of cross gradient double diffusion

natural convection were investigated (Fig. 1). Vertically

stabile stratified concentration gradient (negative gradi-

ent) is imposed on a differentially heated enclosure. The

buoyancy ratio (concentration/temperature), N , is varied
from thermal dominated flow (N ¼ 0) to species con-
centration stabilizing flow condition N ¼ �2:0. Also, the
Lewis number (Le) is varied in the range of 1.0–1000 for
a fixed Prandtl number (Pr ¼ 10:0). The ranges of pa-
rameters which were used are typical for the salt intru-

sion to water and for solidification of ammonium

chloride (NH4Cl) and Na2CO3 solutions, where the

Prandtl number ranges between 10 and 13 for these

solutions. Benard et al. [14] gave the range of Lewis

numbers for the mentioned solutions, Le in the range of
186–194. The Darcy number was varied from Da ¼ 10�3
to Da ¼ 10�5.
In the following sections, the effect of the buoyancy

ratio, N , the modified Rayleigh number, Ra (RaTDa),
and Lewis number is presented on the flow structure and

on the rate of heat and mass transfer in the enclosure.

5. Effects of buoyancy ratio

The results of the flow structure for Ra ¼ 100
(RaT ¼ 105 and Da ¼ 10�3) and for Le ¼ 10 are shown in
Fig. 2 for two-dimensional simulations and for different

buoyancy ratios. For N ¼ 0:0, the flow is driven mainly
by the thermal buoyancy force. The flow structure

consists of only one main circulation occupying the en-

tire enclosure. Concentration gradient reversal is evident

at the core of the cavity, due to strong flow recirculation.

As the jN j value increases (in negative sense) the strength
of the flow circulation decreases and starts to bifurcate

into two weak circulations, Fig. 2(b). Also, concentra-

tion reversal diminishes as jN j increases. At N ¼ �1, the
flow in the core of the cavity almost diminishes and flow

channels along the boundaries. Heat transfer takes place

mainly by conduction as evident from the isotherm

distribution. For N ¼ �1:5, a very weak flow along the
boundaries is evident and the rate of transfer in the core

is essentially diffusive.

Fig. 3 presents similar results for three-dimensional

model. The figure illustrates the stream traces in the

three transversal plans (X–Z) Y ¼ 0:25, 0.5 and 0.75. It
should be mentioned that there is a global similarity in

bifurcation between the Figs. 2 and 3. For N ¼ 0, the
flow is solely driven by thermal buoyancy, which is

symmetrical on the mid-X–Z plane. The flow is three-

dimensional as it is revealed in Fig. 3(a), which shows

stream traces on the transverse planes (X–Z planes). The

parcel of particles that are traveling in the X–Z plane did

not stay on the same plane, where a weak spiral flow is

evident, Fig. 4(a), which shows the stream traces on the

transverse planes (Y–Z) for N ¼ 0. The formation of
such a spiral flow may be because of the effect of lateral

boundaries and three-dimensional boundary layer for-

mations at the corners of the enclosure. Experimental

and numerical results for flow in a differentially heated

Fig. 5. The effect of N on Nu and Sh for two-dimensional and
three-dimensional models, (RaT ¼ 105, Pr ¼ 10, Le ¼ 10, Da ¼
10�3).
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cubic cavity [22,23] without solutal effects showed simi-

lar results. They found that the spiral flow is sensitive to

the lateral boundary conditions. These findings sup-

port the idea that the effect of lateral boundaries and

Fig. 6. Streamline contours for transverse plan (Y–Z) X ¼ 0:5 and for different Rayleighs: (a) Ra ¼ 1:0, (b) Ra ¼ 10:0, (c) Ra ¼ 60:0,
(d) Ra ¼ 100:0, (e) Ra ¼ 400:0 and (f) Ra ¼ 1000:0; Pr ¼ 10, N ¼ �0:5, Le ¼ 10, Da ¼ 10�3.

A.A. Mohamad, R. Bennacer / International Journal of Heat and Mass Transfer 45 (2002) 3725–3740 3733



three-dimensional boundary layer formations at the

corners is the main cause of the spiral flows.

For jN j > 0:0, the effect of concentration is to resist
the vertical flow, where the ascending (descending) flow

Fig. 7. Streamline contours for transverse plan (Y–Z) X ¼ 1:0 and for different Rayleighs: (a) Ra ¼ 1:0, (b) Ra ¼ 10:0, (c) Ra ¼ 60:0,
(d) Ra ¼ 100:0, (e) Ra ¼ 400:0 and (f) Ra ¼ 1000:0; N ¼ �0:5, Pr ¼ 10, Le ¼ 10, Da ¼ 10�3.
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has higher (lower) density compared with the case of

N ¼ 0, which needs more energy to be carried. There-
fore, the strength of spiral flow decreases (Fig. 4(b)).

Also, the dynamics of the flow changes and distance

between two groups of spiraling particles diminishes as

N increases (in negative sense) from 0 to )0.4. When the
buoyancy forces of the thermal and species concentra-

tion become of the same order of magnitude, the flow

started to bifurcate and complex flow patterns were

predicted. Yet for N ¼ �0:7, the transverse flow struc-
tures show perfect symmetry along the central plane

(X ¼ 1:0) with the ‘‘eyes’’ of the spiraling flow at the

center plane Y–Z moving toward the core of the enclo-

sure, while the main flow is ascending and descending at

the right and left planes, respectively (Fig. 4(c)). The

flow structure becomes very complex at N ¼ �0:8 and
the symmetry is lost due to the formation of internal

waves as predicted by Bennacer et al. [16]. Even though

the solution was fully converged, it is expected that the

flow experiences a weak instability. The transverse sec-

ondary flows are so weak compared with the main flow;

therefore the convergence of the solution was not that

sensitive to the formation of a secondary flow. Also, the

difference between predictions of three-dimensional and

two-dimensional models of the rate of heat and mass

transfer is not that significant, which will be discussed

later on. At N ¼ �1:0, the flow bifurcates into two main
circulations, Fig. 3(c). The horizontal trajectory of the

fluid particles rising along the hot wall decreases as the

N, stabilizing force, increases. As jN j approaches unity
(in negative sense), the heavy fluid parcel (high concen-

tration) of particles sinks before they arrive at the other

end of the enclosure, therefore two main recirculation

forms. Since, the particles near the hot wall have low

density compared with particles away from the hot wall,

it is expected that the hot particles may reach higher

altitude before they descend. In fact some particles,

which are very near to the hot wall, successfully reach

Fig. 8. The effect of Ra on Nu and Sh for two-dimensional and three-dimensional models, for N ¼ �0:5, (Pr ¼ 10, Le ¼ 10,
Da ¼ 10�3): (a) semi-log scale and (b) log-scale.

Fig. 9. The effect of Ra on Nu and Sh for two-dimensional and
three-dimensional models, for N ¼ �0:8, (Pr ¼ 10, Le ¼ 10,
Da ¼ 10�3).

A.A. Mohamad, R. Bennacer / International Journal of Heat and Mass Transfer 45 (2002) 3725–3740 3735



the other end of the enclosure. Similar discussion is valid

for the cold end of the enclosure as a result of the skew

symmetry of the problem. For N ¼ �1:5, the flow
almost separated into two main thermally induced

Fig. 10. Streamline contours and for different Le numbers: (a) Le ¼ 1:0, (b) Le ¼ 10:0, (c) Le ¼ 60:0, (d) Le ¼ 100:0, (e) Le ¼ 400:0 and
(f) Le ¼ 1000:0; for transverse plan (Y–Z) (I) X ¼ 0:5 and (II) X ¼ 1:0 (N ¼ �0:5, Pr ¼ 10, Da ¼ 10�3).
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circulations. The reverse flow is mainly due to the dif-

ference in time diffusion between energy and species.

The effect of buoyancy ratio on the average rate of

heat and mass transfer is shown in Fig. 5 for Ra ¼ 100

Fig. 10 (continued)
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and Le ¼ 10. For jN jP 1:0 the heat transfer is diffusive,
while mass transfer enhanced by advection of the mo-

mentum due to thermally induced circulations. The

difference between two- and three-dimensional simula-

tions is not that significant because the secondary flow is

very weak compared with main flow. Usually, the re-

sults of heat and mass transfer for two-dimensional

simulation are slightly higher than the three-dimen-

sional results. This difference can be attributed to the

effect of the lateral boundary and flow conditions at the

corners of the enclosure, where the shear force resists

flow motion. For N about )0.8 the three-dimensional
simulation slightly overpredicts the rate of transfer,

where the flow bifurcation takes place and flow mixing

enhances.

6. Effect of Rayleigh number

Figs. 6 and 7 show stream traces in transverse plane

(Y–Z) for X ¼ 1=2 and X ¼ 1:0, respectively, for dif-
ferent Rayleigh numbers and for Le ¼ 10 and N ¼ �0:5.
The complexity of the flow increases with Ra. The flow is
strictly two-dimensional for Ra ¼ 1:0 and slightly three-
dimensional for Ra ¼ 10. The flow preserves the sym-

metry for all values of Ra investigated. Four transverse
secondary spiral flows become evident for RaP 400.

Figs. 8(a) and (b) represent the heat and mass transfer in

semi-log and log scales, respectively. The heat transfer is

diffusive for Ra < 10 (Fig. 8(a)). As mentioned before,

the effect of thermally induced flow enhances the rate of

mass transfer. The rate of mass transfer can be corre-

lated as Shav ¼ a logRaþ b for Ra > 20, which does not
follow the boundary layer flow correlations. The rate of

heat transfer can be correlated as Nuav ¼ aRan for
Ra > 60 as shown Fig. 8(b), which follows the boundary
layer flow correlation. Fig. 9 shows Nu and Sh as a
function of Rayleigh number for N ¼ �0:8. As men-
tioned before the flow bifurcation becomes evident, the

rate of heat and mass transfer is higher that that for

N ¼ �0:5 (Fig. 8), but the trend is the same for both
N values.

7. Effect of Lewis number

Figs. 10(I) and (II) show the stream trace lines for

X ¼ 1=2 and X ¼ 1, respectively, on the transverse plane
Z–Y. For Ra ¼ 100, the flow is three-dimensional for all
the range of Le numbers. The flow preserves symmetry
along plane (X–Z) for the investigated range of Le but
becomes complex for LeP 400. The flow mainly consists

four spiral secondary vortices superimposed on the main

flow. The effect of Le on the rate of heat and mass
transfer is illustrated in Figs. 11(a) and (b) for N ¼ �0:5
and N ¼ �0:8, respectively. The influence of Le on the
rate of heat transfer is not that significant, i.e., the effect

of Le on the thickness of the thermal boundary layer is
not that considerable. While increasing Le increases the
rate of mass transfer as expected. The effect of N values

Fig. 11. The effect of Le on Nu and Sh for two-dimensional and three-dimensional models for (a) N ¼ �0:5 and (b) N ¼ �0:8,
(Pr ¼ 10, Da ¼ 10�3).
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at least for values of )0.5 and )0.8 is weak on the rate
of mass transfer.

8. Conclusions

Two- and three-dimensional models are presented for

flow in an enclosure heated differentially and stably

stratified in imposed vertically. The effects of the main

controlling parameters, such as buoyancy ratio, porous

Rayleigh number, Lewis number, were investigated to

gain new insights into formation of flow patterns and

into the rate of heat and mass transfer. The main find-

ings of the present work can be summarized as follows:

(1) The difference between two- and three-dimensional

models is not that significant as far as heat and mass

transfer is concerned.

(2) The flow structure mainly consists of thermally in-

duced recirculation flow superimposed with weak

secondary, spiraling flow in transverse direction.

However, when N becomes an order of magnitude

of unity (about )0.8) the flow bifurcates into two

thermally driven circulations. Further increasing

N (greater than unity, in negative sense) the flow

stabilizes and main circulations diminish in the

strength.

(3) Unstable flow is predicted for Le ¼ 100 due to inter-
nal wave formation for N greater than )0.8. This
was evident for two- and three-dimensional models.

(4) In general, a two-dimensional model is sufficient en-

ough to properly model the rate of heat and mass

transfer, at least for the range of investigated param-

eters.
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